Home / Articles / Smart and intelligent textiles
Smart and intelligent textiles
Technology Clothing textiles

Smart and intelligent textiles

Written by: Karthikeyan, Kavitha

Lecturer, Textiles & Fashion Designing,
Vivekanandha College of Arts & Sciences , Tiruchencode
Email: srimrk@gmail.com

Sri Ragavendra Polytechnic College, Komarapalayam
E Mail: tkkavitha@rediffmail.com


Smart materials are the materials, which can sense and react to environmental conditions. According to the manner of reaction, they can be divided into three categories.
• Passive smart: Sense environmental conditions. Ex: Temperature measurement
• Active smart: Sense and react to the environmental conditions. Ex: Wearable Electronics
• Very smart: Sense, react and adapt to the environment conditions. Ex: Color Changing materials


• Since the 19th Century, revolutionary changes have been occurring at an unprecedented rate in science and technology with a profound impact on our lives
• Inventions of ICs, computers, the Internet, discovery and complete mapping of the human genome, and many more have transformed the entire world
• We have also learnt a lot from nature!
• Solid foundations of scientific understanding have been laid to guide the improved usage and processing technology of natural fibers and the manufacturing of synthetic fibers
• The technology has progressed so that manufactured fibers and their products surpass natural fibers in many aspects
• Textiles can now be designed for specialized applications
• Biological routes for synthesizing polymers or textile processing represent an environmentally friendly, sustainable way of utilizing natural resources


• Materials with variable properties Ex: Color or Luster change
• Materials with variable structure and compositions Ex: Chemical changing
• Materials with variable functions Ex: Wearable electronics
• Materials with systematized functions Ex: Signal Detectios



• Engineered textiles are materials that are developed and/or designed for a special need or application where a very high performance is required
• Engineered textiles may combine fabrics with glass, ceramics, metal, or carbon to produce lightweight hybrids with incredible properties. Sophisticated finishes, such as silicone coatings and holographic laminates, transform color, texture, and even form.


• We are inspired to mimic nature in order to create clothing materials with higher levels of functions and smartness
• Cloning silk fibers was a first step
• Can the skin -a smart material- be mimicked?
          » The skin has sensors that can detect pressure, pain, ambient conditions, etc and can
intelligently function with environmental stimuli
• Smart/interactive textiles (SIT) are materials and structure that sense and react to environmental conditions or stimuli, such as those from mechanical, thermal, chemical, electrical, magnetic or other sources.
• SIT are no longer a science-fiction fantasy. For example, there are in the market self-cleaning carpets, memory-shaped and environment-responsive textiles, and anti-insomniac micro-fibers.
• According to the manner of reaction, SIT can be divided into:
          » Passive smart materials, which can only sense the environmental condition or stimuli,
          » Active smart materials, which sense and react to the condition or stimuli,
          » Very smart materials, which can sense, react and adapt themselves accordingly, and
        » Intelligent materials, which are those capable of responding or activated to perform a function in a manual or pre-programmed manner


• For sensors - actuators:
          » Photo-Sensitive Materials
          » Fibre Optics
          » Conductive Polymers
          » Thermal Sensitive Materials
          » Shape Memory Materials
          » Intelligent Coating Materials
          » Chemical Responsive Materials
          » Micro-Capsules
          » Micro- And Nano-Materials
• For Signal Transmission, Processing And Control:
          » Neural Networks And Control Systems
          » Cognition Theory And Systems
• For Integrated Processes And Products:
          » Wearable Electronics And Photonics
          » Adaptive And Responsive Structures
          » Bio-Mimics
          » Tissue Engineering
          » Chemical/Drug Releasing


Today, the focus is on specialty products engineered for specific end-uses and on creative ways to market these products;
» Microdenier nylons are soft and sumptuous with a dull matte appearance for a natural look
» HolofiberTM is a responsive textile that works with the body’s energy system to increase oxygen levels, accelerate muscle recovery and build strength in the body
» A textured yarn can achieve multicolor effects in one dye bath. It is a combination of two modified nylons 6,6. One nylon only accepts acid dyes and rejects cationic ones; the other one acts the opposite way
» Lastol, a new comfort stretch fiber is blended in cotton shirts and blouses, garment-washed denims, casual shirts, etc. for improved processing efficiencies with cotton feel and easy care
» Copper fibers have anti-inflammatory, anti-microbial and anti-fungal properties. Copper is gradually absorbed upon direct contact with the skin, improves blood circulation, increases energy and has anti-arthritic properties
» Copolymers of polyester provide fabrics with a soft hand, dimensional stability, moisture transportability, ease of dyeing and colorfastness


A technology has been created to convert proprietary materials into miniature reflectors that, when imbedded into fabric by the millions, reflect oncoming light, such as automobile headlights, in a way that illuminates the full silhouette of a person, bicycle or any other object. The reflectors are smaller than a grain of sand and finer than a human hair. They can be imbedded into the weave of almost any fabric. The end result is a fabric that remains soft to the touch and retains its function and fashion. During the day, the treated fabrics are indistinguishable from untreated fabrics.


Enhancing Fabric

Hydroweave® provides extraordinary protection against heat, actively cooling the wearer through evaporation, and helping to maintain the core body temperature. It is a three-layer design that combines special hydrophilic and hydrophobic fibers into a fibrous batting core. The batting is sandwiched between a breathable outer shell fabric and a thermally conductive, inner lining


3XDRY® finishing technology was developed to provide a treatment that retains water resistance on the face of a fabric and increases wicking on the back. The two functions are truly separated within the fabric, which remains highly breathable.3XDRY® uses a special process to apply a hydrophilic finish on the back that wicks perspiration away from the body, spreading it over the fabric, and evaporating it quickly on the face. It also has a hydrophobic finish that repels water and dirt. The fabric dries six to eight times faster than untreated fabric. 3XDRY ® also incorporates a hygienic treatment to control odor.


The new “smart response” fiber is proving to enhance passenger safety because of its unique energy-management properties. Securus™ is the first in a new category of polyester copolymer fibers being developed for managed-load applications. It combines polyethylene terephthalate (PET), which provides restraining properties, and polycaprolactone (PCL), which provides flexibility and cushioning.

During a collision, Securus fiber seat belts protect the passenger in a three-step process: holding the passenger securely in place; elongating and cushioning the body as it absorbs the energy of its forward motion; and restraining and limiting that motion.


SmartSkin™ hydrogel is a new technology involving a hydrophilic/hydrophobic copolymer, which is embedded in an open-cell foam layer bonded to the inside of a closed-cell neoprene layer in a composite wet suit fabric with nylon or nylon/Lycra® outer and inner layers.

SmartSkin absorbs cold water that has flushed into the suit and expands to close openings at the hands, feet and neck, preventing more water from entering. Water trapped inside the suit heats up upon body contact. If the water warms up past a transition temperature determined by the proportion of hydrophilic to hydrophobic components, the hydrogel releases water and contracts, allowing more water to flush through the suit. This passive system constantly regulates the internal temperature — no batteries or mechanical action are needed.


Outlast® temperature-regulating technology effectively recycles body heat, keeping the wearer’s skin temperature within a comfortable range. Outlast was first developed for use in astronaut uniforms and as a protection for instruments against the severe temperature changes in outer space.

The technology is now used in apparel, footwear, equipment and linens. Outlast is a paraffin wax compound that is micro-encapsulated into thousands of miniscule, impenetrable, hard shells. It recycles body heat by absorbing, storing, distributing and releasing heat on a continuous basis, keeping the wearer’s skin temperature within a comfortable range.


• Nano-particles are permanently attached to cotton or synthetic fibers. The change occurs at the molecular level, and the particles can be configured to imbue the fabric with various attributes. Nano-technology combines the performance characteristics associated with synthetics with the hand and feel of cotton.

• Nano-fibers 1/1000 the size of a typical cotton fiber are attached to the individual fibers. The changes to the fibers are undetectable and do not affect the natural hand and breathability of the fabric.


Clothing is currently supposed to have more functions than just certain climatic protection and good look. These functions can be referred to wearing and durability properties.

A revolutionary new property of clothing is to exchange information. Clothing is now capable of recording, analyzing, storing, sending and displaying data, which is a new dimension if intelligent systems. Clothing can extend the user’s senses, augment the view of reality and provide useful information anytime and anywhere the user goes.

Application fields are:
• Working: displaying helpful data, connecting to the internet or to other people
• Medicine: monitoring health parameters
• Security: detecting danger, calling for help


Tissue engineering uses living cells and their extra cellular components with textile-based biomaterial scaffolds to develop biological tissues for human body repair. The scaffolds provide support for cellular attachment and subsequent controlled proliferation into predefined tissue shapes.

Such an engineering approach would solve the severe shortage problem associated with organ transplants. Textile-based scaffolds have been used for such tissue engineering purposes. The most frequently used textile-based scaffolds are non-woven structures, preferably of biodegradable materials, because then there is no permanent foreign-body tissue reaction toward the scaffolds and, over time, there is more volume space into which the engineered tissue can grow.


Sensatex is developing a SmartShirt™ System specifically for the protection of public safety personnel, namely firefighters, police officers, and rescue teams. Used in conjunction with a wireless-enabled radio system, the SmartShirt™ can monitor the health and safety of public safety personnel/victims trapped in a building or underneath rubble with the ability to detect the exact location of victims through positioning capability. In addition to monitoring vital signs, the system can detect the extent of falls, and the presence of hazardous gases; it also offers two-way voice communication.


• The range and variety of high performance textiles that have been developed to meet present and future requirements are now considerable
• Textile materials are now combined, modified and tailored in ways far beyond the performance limit of fibers drawn from the silkworm cocoon, grown in the fields, or spun from the fleece of animals
• And the future promises even more!
• What new capacities should we expect as a result of future developments in smart/interactive textiles?
• They should include tera and nano scale magnitudes, complexity, cognition and holism
• The new capability of tera scale takes us three orders of magnitude beyond the present general-purpose and generally accessible computing capabilities. The technology of nano scale takes us three orders of magnitude below the size of most of today’s human-made devices
• It allows to arrange molecules inexpensively in most of the ways permitted by physical laws
• It lets make supercomputers that fit on the head of a fiber, and fleets of medical nano-robots smaller than a human cell to eliminate cancers, infections, clogged arteries
• Fibers are relentlessly replacing traditional materials in many more applications. From super-absorbent diapers, to artificial organs, to construction materials for moon-based space stations
• Heat generating/storing fibers/fabrics are now being used in skiwear, shoes, helmets, etc
• Fabrics and composites integrated with optical fibers sensors are used to monitor bridges and buildings
• Garments integrated with sensors and motherboards can detect and transmit injury and health information of the wearer
• Clothing with its own senses and brain are integrated with Global Positioning Systems (GPS) and mobile phone technology to provide the position of the wearer and directions
• Biological tissues and organs, like ears and noses, are grown from textile scaffolds made from bio-degradable fibers
• Integrated with nano-materials, textiles are imparted with very high energy absorption capacity and other functions such as stain proofing, abrasion resistance, light emission, etc.

To read more articles on Textile, Industry, Technical Textile, Dyes & Chemicals, Machinery, Fashion, Apparel, Technology, Retail, Leather, Footwear & Jewellery,  Software and General please visit http://articles.fibre2fashion.com

To promote your company, product and services via promotional article, follow this link: http://www.fibre2fashion.com/services/article-writing-service/content-promotion-services.asp

Leave your Comments

Follow us